metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(+)-{1,2-Bis[(2*R*,5*R*)-2,5-diethylphospholan-1-yl]ethane- $\kappa^2 P$,*P'*}(η^4 -cycloocta-1,5diene)rhodium(I) tetrafluoridoborate

Stefan Schulz, Christian Fischer, Hans-Joachim Drexler* and Detlef Heller

Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

Correspondence e-mail: hans-joachim.drexler@catalysis.de

Received 26 July 2010; accepted 4 October 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.005 Å; disorder in solvent or counterion; R factor = 0.027; wR factor = 0.073; data-to-parameter ratio = 19.9.

The title compound, $[Rh(C_8H_{12})(C_{18}H_{36}P_2)]BF_4$, exhibits a rhodium(I) complex cation with a bidentate bisphosphine ligand and a bidentate η^2 , η^2 -coordinated cycloocta-1,5-diene ligand. The ligands form a slightly distorted square-planar coordination environment for the Rh(I) atom. An intramolecular P–Rh–P bite angle of 83.91 (2)° is observed. The dihedral angle between the P–Rh–P and the *X*–Rh–*X* planes (*X* is the centroid of a double bond) is 14.0 (1)°. The BF₄ anion is disordered over two positions in a 0.515 (7):0.485 (7) ratio.

Related literature

For general synthetic aspects and different related structures of cationic rhodium bisphosphine diolefin complexes, see: Schulz *et al.* (2010) and references cited therein. For applications of the Et-BPE ligand {Et-BPE (1,2-bis[(2R,5R)-2,5-diethylphospholan-1-yl]ethane)} in catalytic reactions, see: Axtell *et al.* (2005); Jerphagnon *et al.* (2003); Burk *et al.* (1998). For related structures, see: Burk *et al.* (1990); Drexler *et al.* (2001, 2004).

Experimental

Crystal data

 $[Rh(C_8H_{12})(C_{18}H_{36}P_2)]BF_4$ $M_r = 612.32$ Orthorhombic, $P2_12_12_1$ a = 8.8374 (18) Å b = 16.218 (3) Å c = 19.946 (4) Å

Data collection

STOE IPDS 2 diffractometer Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005) $T_{min} = 0.728, T_{max} = 0.858$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.027 & \mbox{H-atom parameters constrained} \\ wR(F^2) = 0.073 & \mbox{$\Delta\rho_{\rm max}} = 0.95 \mbox{ e \AA^{-3}} \\ S = 1.06 & \mbox{$\Delta\rho_{\rm min}} = -0.34 \mbox{ e \AA^{-3}} \\ 6075 \mbox{ reflections} & \mbox{$Absolute structure: Flack (1983),} \\ 305 \mbox{ parameters} & 2621 \mbox{ Friedel pairs} \\ 21 \mbox{ restraints} & \mbox{Flack parameter: } -0.02 \mbox{ (2)} \end{array}$

 $V = 2858.7 (10) \text{ Å}^3$

Mo Ka radiation

 $0.50 \times 0.43 \times 0.40$ mm

36650 measured reflections

6075 independent reflections

5779 reflections with $I > 2\sigma(I)$

 $\mu = 0.75 \text{ mm}^-$

T = 200 K

 $R_{\rm int} = 0.035$

Z = 4

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2281).

References

- Axtell, A. T., Cobley, C. J., Klosin, J., Whiteker, G. T., Zanotti-Gerosa, A. & Abboud, K. A. (2005). Angew. Chem. Int. Ed. 44, 5834–5838.
- Burk, M. J., Bienewald, F., Harris, M. & Zanotti-Gerosa, A. (1998). Angew. Chem. Int. Ed. 37, 1931–1933.
- Burk, M. J., Feaster, J. E. & Harlow, R. L. (1990). Organometallics, 9, 2653–2655.
- Drexler, H.-J., Baumann, W., Spannenberg, A., Fischer, C. & Heller, D. (2001). J. Organomet. Chem. 621, 89–102.
- Drexler, H.-J., Zhang, S., Sun, A., Spannenberg, A., Arrieta, A., Preetz, A. & Heller, D. (2004). *Tetrahedron Asymmetry*, 15, 2139–2150.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jerphagnon, T., Renaud, J.-L., Demonchaux, P., Ferreira, A. & Bruneau, C. (2003). *Tetrahedron Asymmetry*, 14, 1973–1977.
- Schulz, S., Drexler, H.-J. & Heller, D. (2010). Acta Cryst. E66, m721-m722.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2005). X-AREA, X-RED32and X-SHAPE. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (2010). E66, m1370 [doi:10.1107/S1600536810039577]

(+)-{1,2-Bis[(2R,5R)-2,5-diethylphospholan-1-yl]ethane- $\kappa^2 P, P'$ }(η^4 -cycloocta-1,5-diene)rhodium(I) tetrafluoridoborate

S. Schulz, C. Fischer, H.-J. Drexler and D. Heller

Comment

The geometry of the cation of the title compound is comparable with the three independent complexes described in Schulz *et al.* (2010): the dihedral angle between the planes P1,Rh1,P2 and X1,Rh1,X2 (X = centroid of the double bond) of 14.0 (1)° corresponds to those in the Me-BPE complexes (14.7 (1)°, 14.8 (1)° and 15.3 (1)°). Furthermore, the dihedral angle is not the value found for the corresponding Et-DuPhos complex [Rh((R,R)-Et-DuPhos)COD]BF₄ (21.1 (1)°) (Drexler *et al.*, 2001) or for the complex [Rh((R,R)-Me-BPE)COD]SbF₆ (19.4°) (Burk *et al.*, 1990; Drexler *et al.*, 2004). The cationic rhodium bisphosphine diolefine complexes build up five-membered ring chelates with rhodium (Fig. 1). For the title compound the molecular structure shows a δ -conformation of the backbone of the bisphosphine. The COD is η^2 , η^2 -coordinated and is orientated in an anticlockwise twist manner. An intramolecular P1—Rh1—P2 angle of 83.91 (2)° is obtained. This is in the same range of corresponding complexes already described in the literature Schulz *et al.* (2010) and literature therein. The bonds Rh1—P1 and Rh1—P2 show bond lengths of 2.2754 (8) Å and 2.2702 (8) Å, respectively. Applications of the ligand Et-BPE in catalytic reactions are reported by Axtell *et al.* (2005); Jerphagnon *et al.* (2003) and Burk *et al.* (1998).

Experimental

By overlaying a solution of $[Rh((R,R)-Et-BPE)COD)]BF_4$ in dichloromethane with MTBE (methyl-*tert*-butylether) red single crystals suitable for X-ray analysis are obtained. ³¹P NMR (CD₂Cl₂, 298 K, 162 MHz) [p.p.m.]: 73.5 (d, $J_{P-Rh} = 145.5$ Hz).

Refinement

All non-hydrogen atoms are refined anisotropically, except not fully occupied fluorine atoms of the anion. All H atoms were placed in idealized positions with d(C-H) = 0.98(CH), 0.97 (CH₂) and 0.96 (CH₃) Å and refined using a riding model with $U_{iso}(H)$ fixed at 1.5 $U_{eq}(C)$ for CH₃ and 1.2 $U_{eq}(C)$ for CH₂ and CH. The absolute configuration indicators 2*R*,5*R* for the title compound were determined by using 2621 Friedel pairs in the refinement. The Flack parameter at convergence was -0.02 (2).

Figures

Fig. 1. Perspective view and numbering scheme of the cation $[Rh((R,R)-Et-BPE)COD]^+$. All H atoms and the anion have been omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level.

(+)-{1,2-Bis[(2*R*,5*R*)-2,5-diethylphospholan-1-yl]ethane- $\kappa^2 P_r P_r^{(\eta^4-cycloocta-1,5-diene)}$ rhodium(I) tetrafluor-idoborate

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 54003 reflections

F(000) = 1280 $D_{\rm x} = 1.423 \text{ Mg m}^{-3}$

 $\theta = 1.6-27.2^{\circ}$ $\mu = 0.75 \text{ mm}^{-1}$ T = 200 KPart of block, red $0.50 \times 0.43 \times 0.40 \text{ mm}$

Crystal data

$[Rh(C_8H_{12})(C_{18}H_{36}P_2)]BF_4$
$M_r = 612.32$
Orthorhombic, $P2_12_12_1$
Hall symbol: P 2ac 2ab
<i>a</i> = 8.8374 (18) Å
<i>b</i> = 16.218 (3) Å
c = 19.946 (4) Å
$V = 2858.7 (10) \text{ Å}^3$
Z = 4

Data collection

STOE IPDS 2 diffractometer	6075 independent reflections
Radiation source: fine-focus sealed tube	5779 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.035$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 26.8^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
rotation method scans	$h = -11 \rightarrow 11$
Absorption correction: numerical (<i>X-SHAPE</i> ; Stoe & Cie, 2005)	$k = -20 \rightarrow 20$
$T_{\min} = 0.728, T_{\max} = 0.858$	$l = -25 \rightarrow 25$
36650 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H-atom parameters constrained
$wR(F^2) = 0.073$	$w = 1/[\sigma^2(F_o^2) + (0.0545P)^2 + 0.2291P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\text{max}} = 0.002$
6075 reflections	$\Delta \rho_{max} = 0.95 \text{ e } \text{\AA}^{-3}$
305 parameters	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
21 restraints	Absolute structure: Flack (1983), 2621 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.02 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$ Occ. (<1) \boldsymbol{Z} х y Rh1 0.02703 (6) 0.55265(2) 0.179334(12)0.820495 (9) P1 0.62151 (8) 0.15079 (4) 0.71305 (3) 0.02599 (13) P2 0.62220 (8) 0.02676 (13) 0.04667 (4) 0.83972 (3) C1 0.5242(4)0.31550 (18) 0.80272 (15) 0.0417 (7) H1A 0.050* 0.5663 0.3348 0.7600 C2 0.3872(4)0.2772(2)0.79692 (15) 0.0431(7)H2A 0.3502 0.2749 0.7506 0.052* C3 0.2629 (5) 0.2709 (3) 0.8481 (2) 0.0656 (11) 0.079* H3A 0.1969 0.2254 0.8362 H3B 0.2032 0.3211 0.8470 0.079* C4 0.3214 (6) 0.2576 (3) 0.9195 (2) 0.0721 (13) H4A 0.3489 0.3106 0.9384 0.087* H4B 0.2401 0.087* 0.2351 0.9466 C5 0.2006 (2) 0.4564 (6) 0.92417 (14) 0.0550 (10) 0.1500 H5A 0.4380 0.9499 0.066* C6 0.6040 (6) 0.2249 (2) 0.92248 (16) 0.0555 (11) H6A 0.9479 0.067* 0.6720 0.1888 C7 0.91348 (19) 0.6635(7)0.3112(2)0.0689(13)H7A 0.7685 0.3079 0.8995 0.083* H7B 0.3389 0.083* 0.6612 0.9566 C8 0.5783 (6) 0.3636(2) 0.86315 (19) 0.0667 (13) H8A 0.4916 0.3883 0.8852 0.080* H8B 0.6437 0.4080 0.8481 0.080* C9 0.03874 (18) 0.70368 (13) 0.0333 (6) 0.6456 (3) H9A 0.5478 0.0122 0.6988 0.040* H9B 0.7057 0.0267 0.6642 0.040* C10 0.7254 (3) 0.00717 (18) 0.76640 (13) 0.0340 (6) H10A 0.8294 0.0264 0.041* 0.7672 H10B 0.7259 -0.05260.7668 0.041* C11 0.5147 (3) 0.18501 (18) 0.0309 (5) 0.63828 (12) H11A 0.4830 0.2421 0.6462 0.037* C12 0.6369 (4) 0.1865 (2) 0.58392 (14) 0.0435 (7) H12A 0.6605 0.1308 0.5696 0.052*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H12B	0.6018	0.2174	0.5453	0.052*	
C13	0.7764 (4)	0.2272 (2)	0.61365 (17)	0.0484 (8)	
H13A	0.7610	0.2863	0.6161	0.058*	
H13B	0.8631	0.2168	0.5850	0.058*	
C14	0.8070 (3)	0.19301 (18)	0.68390 (14)	0.0364 (6)	
H14A	0.8773	0.1466	0.6793	0.044*	
C15	0.3730 (4)	0.1352 (2)	0.62165 (15)	0.0414 (7)	
H15A	0.3083	0.1328	0.6609	0.050*	
H15B	0.4020	0.0793	0.6102	0.050*	
C16	0.2847 (4)	0.1727 (3)	0.56339 (17)	0.0522 (8)	
H16A	0.1960	0.1402	0.5549	0.078*	
H16B	0.3473	0.1735	0.5241	0.078*	
H16C	0.2553	0.2280	0.5746	0.078*	
C17	0.8803 (4)	0.2564 (3)	0.7303 (2)	0.0556 (9)	
H17A	0.8119	0.3026	0.7362	0.067*	
H17B	0.8971	0.2316	0.7739	0.067*	
C18	1.0305 (5)	0.2877 (3)	0.7027 (3)	0.0729 (12)	
H18A	1.0730	0.3272	0.7333	0.109*	
H18B	1.0140	0.3135	0.6600	0.109*	
H18C	1.0991	0.2423	0.6975	0.109*	
C19	0.7298 (3)	0.01375 (18)	0.91399 (14)	0.0338 (6)	
H19A	0.6911	0.0451	0.9523	0.041*	
C20	0.6821 (4)	-0.07572 (19)	0.92375 (17)	0.0449 (7)	
H20A	0.7293	-0.1108	0.8903	0.054*	
H20B	0.7111	-0.0951	0.9679	0.054*	
C21	0.5106 (4)	-0.07681 (19)	0.91604 (16)	0.0428 (7)	
H21A	0.4637	-0.0499	0.9542	0.051*	
H21B	0.4747	-0.1333	0.9143	0.051*	
C22	0.4677 (3)	-0.03148 (17)	0.85109 (14)	0.0345 (6)	
H22A	0.4750	-0.0711	0.8141	0.041*	
C23	0.3065 (4)	0.0006 (2)	0.85289 (17)	0.0448 (7)	
H23A	0.3000	0.0436	0.8865	0.054*	
H23B	0.2402	-0.0439	0.8668	0.054*	
C24	0.2487 (4)	0.0349 (3)	0.7865 (2)	0.0622 (10)	
H24A	0.1466	0.0540	0.7920	0.093*	
H24B	0 2513	-0.0076	0 7530	0.093*	
H24C	0.3118	0.0800	0 7727	0.093*	
C25	0.9010 (4)	0.0292.(2)	0.91028(17)	0.0456 (7)	
H25A	0.9430	-0.0031	0.8738	0.055*	
H25B	0.9186	0.0869	0.9003	0.055*	
C26	0.9818(5)	0.0075 (4)	0.9735(2)	0.0775 (13)	
H26A	1 0879	0.0184	0.9683	0.116*	
H26R	0.9669	-0.0499	0.9832	0.116*	
H26C	0.9425	0.0401	1 0097	0.116*	
R1	0.5008 (3)	0.0287(2)	0.09541 (15)	0.0521 (9)	
F1	0.3000(5) 0.4824(5)	0.0207(2)	0.15617 (16)	0.1419(18)	
F2	0.4003 (6)	0.0037(3)	0.13017(10)	0.0663 (15)*	0.515(7)
F2	0.4605 (0)	0.0467 (4)	0.0748(2)	0.0003 (13)*	0.515(7) 0.515(7)
г <i>э</i> Е4	0.0404 (3)	-0.0470 (4)	0.0740(3)	$0.0771(10)^{\circ}$ 0.125(2)*	0.515(7)
Г4	0.4794 (10)	-0.04/0(4)	0.1255 (4)	$0.125(3)^{r}$	0.313(/)

F2'	0.3620 (5)	0.0229 (4)	0.0636 (3)	0.0655 (15)*	0.485 (7)
F3'	0.5818 (10)	0.0895 (5)	0.0629 (4)	0.111 (3)*	0.485 (7)
F4'	0.5614 (7)	-0.0489 (3)	0.0851 (3)	0.0781 (19)*	0.485 (7)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rh1	0.03754 (10)	0.02407 (10)	0.01948 (9)	0.00346 (8)	-0.00143 (7)	-0.00007 (7)
P1	0.0289 (3)	0.0278 (3)	0.0213 (3)	0.0005 (2)	0.0010 (2)	0.0001 (2)
P2	0.0317 (3)	0.0240 (3)	0.0246 (3)	0.0016 (3)	-0.0005 (2)	0.0006 (2)
C1	0.0641 (19)	0.0273 (13)	0.0336 (13)	0.0106 (14)	-0.0043 (12)	0.0059 (11)
C2	0.0526 (17)	0.0443 (17)	0.0324 (13)	0.0261 (15)	0.0063 (13)	0.0056 (12)
C3	0.062 (2)	0.076 (3)	0.059 (2)	0.030 (2)	0.0252 (19)	0.006 (2)
C4	0.107 (4)	0.065 (3)	0.044 (2)	0.028 (2)	0.037 (2)	0.0032 (18)
C5	0.104 (3)	0.0408 (18)	0.0198 (12)	0.0109 (19)	0.0115 (17)	0.0005 (11)
C6	0.111 (3)	0.0291 (16)	0.0265 (14)	0.0103 (18)	-0.0235 (17)	-0.0037 (12)
C7	0.126 (4)	0.0322 (18)	0.0481 (19)	-0.002 (2)	-0.034 (2)	-0.0029 (15)
C8	0.124 (4)	0.0303 (17)	0.0455 (18)	0.002 (2)	-0.015 (2)	0.0045 (14)
C9	0.0405 (15)	0.0334 (14)	0.0260 (12)	0.0011 (11)	0.0036 (10)	-0.0019 (11)
C10	0.0411 (15)	0.0310 (14)	0.0299 (13)	0.0040 (11)	0.0038 (11)	-0.0001 (11)
C11	0.0391 (14)	0.0326 (13)	0.0210 (10)	0.0000 (11)	-0.0007 (9)	0.0014 (10)
C12	0.0479 (17)	0.057 (2)	0.0253 (12)	0.0031 (16)	0.0055 (11)	0.0059 (13)
C13	0.0458 (17)	0.061 (2)	0.0386 (16)	-0.0046 (15)	0.0080 (13)	0.0160 (15)
C14	0.0327 (13)	0.0392 (15)	0.0371 (14)	0.0000 (10)	0.0009 (11)	0.0051 (12)
C15	0.0480 (17)	0.0448 (17)	0.0314 (14)	-0.0022 (14)	-0.0072 (12)	0.0045 (12)
C16	0.0573 (19)	0.057 (2)	0.0426 (16)	-0.0054 (18)	-0.0188 (14)	0.0081 (17)
C17	0.0420 (17)	0.063 (2)	0.062 (2)	-0.0173 (17)	0.0009 (16)	-0.0054 (18)
C18	0.047 (2)	0.085 (3)	0.087 (3)	-0.024 (2)	-0.0018 (19)	0.002 (2)
C19	0.0390 (15)	0.0329 (15)	0.0294 (13)	0.0031 (11)	-0.0023 (11)	0.0043 (11)
C20	0.060(2)	0.0308 (15)	0.0440 (17)	0.0067 (14)	-0.0009 (15)	0.0087 (13)
C21	0.0573 (19)	0.0299 (14)	0.0412 (15)	-0.0087 (13)	0.0024 (13)	0.0082 (12)
C22	0.0418 (16)	0.0282 (13)	0.0335 (12)	-0.0061 (12)	0.0032 (11)	-0.0025 (10)
C23	0.0369 (16)	0.0483 (18)	0.0491 (18)	-0.0052 (13)	0.0065 (13)	0.0055 (15)
C24	0.0378 (18)	0.083 (3)	0.066 (2)	-0.0052 (18)	-0.0062 (16)	0.014 (2)
C25	0.0435 (17)	0.0484 (19)	0.0450 (17)	0.0009 (13)	-0.0045 (13)	0.0088 (14)
C26	0.066 (3)	0.106 (4)	0.061 (3)	-0.001 (2)	-0.012 (2)	0.010 (2)
B1	0.061 (2)	0.045 (2)	0.050 (2)	-0.0017 (17)	-0.0056 (17)	0.0075 (17)
F1	0.118 (3)	0.241 (5)	0.0664 (18)	-0.026 (3)	0.0212 (19)	-0.049 (3)

Geometric parameters (Å, °)

Rh1—C2	2.209 (3)	C13—H13B	0.9700
Rh1—C6	2.211 (3)	C14—C17	1.528 (5)
Rh1—C1	2.251 (3)	C14—H14A	0.9800
Rh1—C5	2.262 (3)	C15—C16	1.526 (4)
Rh1—P2	2.2702 (8)	C15—H15A	0.9700
Rh1—P1	2.2754 (8)	C15—H15B	0.9700
Р1—С9	1.839 (3)	C16—H16A	0.9600
P1-C11	1.850 (3)	С16—Н16В	0.9600

P1—C14	1.869 (3)	С16—Н16С	0.9600
P2	1.839 (3)	C17—C18	1.524 (5)
P2—C19	1.840 (3)	C17—H17A	0.9700
P2—C22	1.877 (3)	С17—Н17В	0.9700
C1—C2	1.366 (5)	C18—H18A	0.9600
C1—C8	1.514 (5)	C18—H18B	0.9600
C1—H1A	0.9800	C18—H18C	0.9600
C2—C3	1.503 (5)	C19—C20	1.523 (4)
C2—H2A	0.9800	C19—C25	1.536 (5)
C3—C4	1.531 (6)	С19—Н19А	0.9800
С3—НЗА	0.9700	C20—C21	1.524 (5)
С3—Н3В	0.9700	C20—H20A	0.9700
C4—C5	1.511 (6)	C20—H20B	0.9700
C4—H4A	0.9700	C21—C22	1.537 (4)
C4—H4B	0.9700	C21—H21A	0.9700
C5—C6	1.363 (7)	C21—H21B	0.9700
С5—Н5А	0.9800	C22—C23	1.517 (4)
C6—C7	1.506 (5)	C22—H22A	0.9800
С6—Н6А	0.9800	C23—C24	1.524 (5)
С7—С8	1.516 (5)	C23—H23A	0.9700
С7—Н7А	0.9700	С23—Н23В	0.9700
С7—Н7В	0.9700	C24—H24A	0.9600
C8—H8A	0.9700	C24—H24B	0.9600
C8—H8B	0.9700	C24—H24C	0.9600
C9—C10	1.525 (4)	C25—C26	1.491 (5)
С9—Н9А	0.9700	C25—H25A	0.9700
С9—Н9В	0.9700	С25—Н25В	0.9700
C10—H10A	0.9700	C26—H26A	0.9600
C10—H10B	0.9700	C26—H26B	0.9600
C11—C15	1.526 (4)	C26—H26C	0.9600
C11—C12	1.531 (4)	B1—F1	1.362 (3)
C11—H11A	0.9800	B1—F2	1.372 (4)
C12—C13	1.518 (5)	B1—F4	1.377 (4)
C12—H12A	0.9700	B1—F3'	1.381 (4)
C12—H12B	0.9700	B1—F3	1.382 (4)
C13—C14	1.531 (4)	B1—F4'	1.383 (4)
C13—H13A	0.9700	B1—F2'	1.384 (4)
C2—Rh1—C6	95.24 (13)	C14—C13—H13A	109.6
C2—Rh1—C1	35.65 (13)	С12—С13—Н13В	109.6
C6—Rh1—C1	80.79 (11)	C14—C13—H13B	109.6
C2—Rh1—C5	80.57 (12)	H13A—C13—H13B	108.2
C6—Rh1—C5	35.46 (17)	C17—C14—C13	112.7 (3)
C1—Rh1—C5	87.29 (11)	C17—C14—P1	115.5 (2)
C2—Rh1—P2	153.68 (10)	C13—C14—P1	105.2 (2)
C6—Rh1—P2	96.08 (9)	C17—C14—H14A	107.7
C1—Rh1—P2	170.65 (9)	C13—C14—H14A	107.7
C5—Rh1—P2	95.26 (9)	P1	107.7
C2—Rh1—P1	97.05 (8)	C11—C15—C16	112.0 (3)
C6—Rh1—P1	151.59 (13)	C11—C15—H15A	109.2

C1—Rh1—P1	94.65 (8)	C16—C15—H15A	109.2
C5—Rh1—P1	172.93 (13)	С11—С15—Н15В	109.2
P2—Rh1—P1	83.91 (2)	C16-C15-H15B	109.2
C9—P1—C11	105.88 (13)	H15A—C15—H15B	107.9
C9—P1—C14	103.23 (13)	C15—C16—H16A	109.5
C11—P1—C14	94.99 (12)	C15—C16—H16B	109.5
C9—P1—Rh1	109.13 (9)	H16A—C16—H16B	109.5
C11—P1—Rh1	124.17 (9)	C15—C16—H16C	109.5
C14—P1—Rh1	116.93 (10)	H16A—C16—H16C	109.5
C10—P2—C19	106.43 (13)	H16B—C16—H16C	109.5
C10—P2—C22	102.82 (13)	C18—C17—C14	112.0 (3)
C19—P2—C22	94.75 (13)	C18—C17—H17A	109.2
C10—P2—Rh1	109.28 (9)	C14—C17—H17A	109.2
C19—P2—Rh1	123.44 (10)	C18—C17—H17B	109.2
C22—P2—Rh1	117.61 (10)	C14—C17—H17B	109.2
C2—C1—C8	125.6 (3)	H17A—C17—H17B	107.9
C2—C1—Rh1	70.51 (16)	C17—C18—H18A	109.5
C8—C1—Rh1	110.2 (2)	C17—C18—H18B	109.5
C2—C1—H1A	114.1	H18A—C18—H18B	109.5
C8—C1—H1A	114.1	C17—C18—H18C	109.5
Rh1—C1—H1A	114.1	H18A—C18—H18C	109.5
C1—C2—C3	128.4 (3)	H18B—C18—H18C	109.5
C1—C2—Rh1	73.84 (17)	C20—C19—C25	115.7 (3)
C3—C2—Rh1	106.9 (2)	C20—C19—P2	103.7 (2)
C1—C2—H2A	113.2	C25—C19—P2	115.0 (2)
С3—С2—Н2А	113.2	С20—С19—Н19А	107.3
Rh1—C2—H2A	113.2	С25—С19—Н19А	107.3
C2—C3—C4	113.2 (4)	Р2—С19—Н19А	107.3
С2—С3—НЗА	108.9	C21—C20—C19	105.9 (3)
С4—С3—НЗА	108.9	C21—C20—H20A	110.6
С2—С3—Н3В	108.9	C19—C20—H20A	110.6
С4—С3—Н3В	108.9	C21—C20—H20B	110.6
H3A—C3—H3B	107.7	С19—С20—Н20В	110.6
C5—C4—C3	114.2 (3)	H20A—C20—H20B	108.7
C5—C4—H4A	108.7	C20—C21—C22	109.0 (3)
C3—C4—H4A	108.7	C20—C21—H21A	109.9
C5—C4—H4B	108.7	C22—C21—H21A	109.9
C3—C4—H4B	108.7	C20—C21—H21B	109.9
H4A—C4—H4B	107.6	C22—C21—H21B	109.9
C6—C5—C4	125.2 (4)	H21A—C21—H21B	108.3
C6—C5—Rh1	70.2 (2)	C23—C22—C21	112.1 (3)
C4—C5—Rh1	109.5 (2)	C23—C22—P2	117.0 (2)
С6—С5—Н5А	114.4	C21—C22—P2	104.2 (2)
C4—C5—H5A	114.4	C23—C22—H22A	107.7
Rh1—C5—H5A	114.4	C21—C22—H22A	107.7
C5—C6—C7	127.3 (4)	P2—C22—H22A	107.7
C5—C6—Rh1	74.32 (19)	C22—C23—C24	114.8 (3)
C7—C6—Rh1	105.8 (2)	C22—C23—H23A	108.6
С5—С6—Н6А	113.7	C24—C23—H23A	108.6

С7—С6—Н6А	113.7	C22—C23—H23B	108.6
Rh1—C6—H6A	113.7	C24—C23—H23B	108.6
C6—C7—C8	115.2 (4)	H23A—C23—H23B	107.5
С6—С7—Н7А	108.5	C23—C24—H24A	109.5
С8—С7—Н7А	108.5	C23—C24—H24B	109.5
С6—С7—Н7В	108.5	H24A—C24—H24B	109.5
С8—С7—Н7В	108.5	C23—C24—H24C	109.5
H7A—C7—H7B	107.5	H24A—C24—H24C	109.5
C1—C8—C7	113.3 (3)	H24B—C24—H24C	109.5
C1—C8—H8A	108.9	C26—C25—C19	113.1 (3)
С7—С8—Н8А	108.9	C26—C25—H25A	109.0
C1—C8—H8B	108.9	C19—C25—H25A	109.0
С7—С8—Н8В	108.9	C26—C25—H25B	109.0
H8A—C8—H8B	107.7	C19—C25—H25B	109.0
C10—C9—P1	107.57 (19)	H25A—C25—H25B	107.8
С10—С9—Н9А	110.2	C25—C26—H26A	109.5
Р1—С9—Н9А	110.2	C25—C26—H26B	109.5
С10—С9—Н9В	110.2	H26A—C26—H26B	109.5
Р1—С9—Н9В	110.2	C25—C26—H26C	109.5
Н9А—С9—Н9В	108.5	H26A—C26—H26C	109.5
C9—C10—P2	107.82 (19)	H26B—C26—H26C	109.5
C9-C10-H10A	110.1	F1—B1—F2	119.1 (4)
P2-C10-H10A	110.1	F1—B1—F4	89.5 (5)
С9—С10—Н10В	110.1	F2—B1—F4	114.3 (5)
P2-C10-H10B	110.1	F1—B1—F3'	99.5 (4)
H10A—C10—H10B	108.5	F2—B1—F3'	81.1 (5)
C15—C11—C12	115.7 (2)	F4—B1—F3'	155.6 (6)
C15—C11—P1	115.8 (2)	F1—B1—F3	106.4 (4)
C12-C11-P1	102.44 (19)	F2—B1—F3	109.9 (4)
C15—C11—H11A	107.5	F4—B1—F3	116.4 (5)
C12—C11—H11A	107.5	F1—B1—F4'	125.4 (4)
P1—C11—H11A	107.5	F2—B1—F4'	109.1 (4)
C13—C12—C11	107.6 (2)	F4—B1—F4'	46.1 (4)
C13—C12—H12A	110.2	F3'—B1—F4'	112.3 (5)
C11—C12—H12A	110.2	F3—B1—F4'	77.7 (4)
C13—C12—H12B	110.2	F1—B1—F2'	109.4 (4)
C11—C12—H12B	110.2	F4—B1—F2'	90.9 (5)
H12A—C12—H12B	108.5	F3'—B1—F2'	107.0 (5)
C12—C13—C14	110.1 (3)	F3—B1—F2'	134.7 (4)
C12—C13—H13A	109.6	F4'—B1—F2'	102.3 (4)

Fig. 1